A separable postliminal $C\sp{\ast} $-algebra without maximal closed ideals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal chains of closed prime ideals for discontinuous algebra norms on C(K)

Let K be an infinite compact space, let C(K) be the algebra of continuous complex-valued functions of K, let F be a well-ordered chain of nonmaximal prime ideals of C(K), let IF be the smallest element of F and let MF be the unique maximal ideal of C(K) containing the elements of F . Assuming the continuum hypothesis, we show that if |C(K)/IF | = 20 , and if there exists a sequence (Gn)n≥1 of s...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

MAXIMAL DIVISORIAL IDEALS AND t-MAXIMAL IDEALS

We give conditions for a maximal divisorial ideal to be t-maximal and show with examples that, even in a completely integrally closed domain, maximal divisorial ideals need not be t-maximal.

متن کامل

Ideals of Pre A ∗ - Algebra

In this paper we formulate the definition of an ideal of Pre A∗-algebra A and discuss certain examples. Also certain binary operations are introduced on the set of ideals and various properties of these are investigated. Copyright c © 2011 Yang’s Scientific Research Institute, LLC. All rights reserved.

متن کامل

a note on maximal non-prime ideals

the rings considered in this article are commutative with identity $1neq 0$. by a proper ideal of a ring $r$,  we mean an ideal $i$ of $r$ such that $ineq r$.  we say that a proper ideal $i$ of a ring $r$ is a  maximal non-prime ideal if $i$ is not a prime ideal of $r$ but any proper ideal $a$ of $r$ with $ isubseteq a$ and $ineq a$ is a prime ideal. that is, among all the proper ideals of $r$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1971

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1971-0281016-1